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FOREWORD

This study was performed by Dr. Sze-Tsen Hu, Professor of Mathematics, University

of California at Los Angeles, while acting as consultant to the Electronic Sciences

Laboratory, Lockheed Missiles & Space Company, Sunnyvale, California.
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ABSTRACT

This report describes an algorithm for applying the dual simplex method in linear

programming to the problem of determining whether or not a given switching function

is linearly separable. Further, where separability is possible, a description is

given of the application of the dual simplex method to finding the most economic sys-

temr of weights and threshold.

A detailed elementary exposition of the dual simplex method is given in Sections 2

through 4. A completely worked out illustrative numerical example is presented in

I Section 5. In Sections 6 through 8, the dual simplex method is applied to the problem

of determining minimal weights and threshold; this is illustrated by a numerical

example which reduces to the example given in Section 5.
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Section 1

INTRODUCTION

Linear programming was first applied to the general synthesis problem of linear

separability of switching functions by R. C. Minnick (Ref. 1). Using Minnick's

method for a switching function of n variables, it becomes necessary to solve

equations in 2(n + 1 + 2 n) nonnegative variables in such a way that the cost function

will be minimized (Ref. 1, p. 11). For n = 7, which is the lowest dimension of

the problem not yet solved, it is necessary to solve 128 equations in 272 nonnegative

variables for each of the 2128 switching functions of seven variables. This is by

far too large a task for even the best electronic computers to accomplish.

In a joint paper of S. Muroga, I Toda, and S. Takasu (Ref. 2), which appeared two

months following Ref. 1, linear programming was also applied to the general synthesis

problem. Unlike Minnick, the authors of Ref. 2 introduced a reduction process which

reduced the number of inequalities by applying the deletion law in Boolean algebra.

This method is considerably simpler than that of Minnick but not simple enough for

actual computation.

In an earlier report by the author (Ref. 3), linear programming was applied to the

Willis synthesis method (Ref. 4) for finding canonical separating systems; the

canonical partial order was fully used and, hence, the number of inequalities reduced

to a minimum. The solution of the resulting system of inequalities for any given

regular switching function of n variables depends completely on that of a system of

n + 2 linear equations in accordance with a well-known theorem on linear inequalities.

The problem of solving this system of n + 2 linear equations is made into a canonical

minimum problem of linear programming by introducing one more variable. Then,

the usual simplex method is applied to this canonical minimum problem.

1-1
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I
In another of the author's reports (Ref. 5), the problem of finding the most economic r
separating systems was formulated in the form of a standard minimum problem of

linear programming. It was proved in Ref. 5 that this standard minimum problem

has optimal solutions if and only if it is feasible. However, the usual method in

linear programming for solving a standard minimum problem consists of two major

steps: first, -one must determine whether or not the problem is feasible and, if so,

find a feasible solution of the problem; second, using the feasible solution obtained

in the first step, one can find an optimal solution of the problem by means of the

usual simplex method. The first step can be accomplished by the method given in

Ref. 3 which involves another application of the simplex method. It appears that one

has to use the simplex method twice to get a set of minimal weights and threshold.

Fortunately, this apparent complication is by no means inevitable. In fact, in a

recent report by the author (Ref. 6), an algorithm was described for solving this

problem by applying the usual simplex method on its dual maximum problem.

The objective of the present report is to give a simpler direct method of solving the

minimization problem by making use of the dual simplex method of C. E. Lemke

(Ref. 7). The minimization problem is always dually feasible no matter whether the

given regular switching function is linearly separable or not. Hence, the problem

can be solved by applying the dual simplex once, not twice.

For the convenience of the reader, a detailed exposition of the dual simplex method

in the form suitable for our application is given in Sections 2 through 4. An il!us-

trative numerical example is presented in Section 5. In Sections 6 and 7, we will

review briefly the preliminaries and formulate the synthesis and minimization

problem. The solution of the problem by means of the dual simplex method is given

and illustrated in Section 8.

1-2
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Section 2

STANDARD PROBLEM IN LINEAR PROGRAMMING

flA standard problem in linear programming is to find nonnegative real numbers which

minimize (or maximize) a given linear function subject to a given system of linear in-

equalities. Since a maximum problem is reduced to a minimum problem simply by

multiplying the given linear function with -1, we will describe and study the standard

S1minimum problem only.

For this purpose, let us consider a given linear function

q

Ll a 0,0 +E aoj tj (2.1)
j=l

of q variables t!, .. , t where a, 0 , ao,1,' aoq are given real numbers.

On the other hand, let

Ia,+a. + a~ 0 (2.2)

j=1

where i = 1, 2, •,, p, be a given system of p inequalities in the same variables

tl*, * ') tq with given real coefficients a.i. and constant terms ai, 0 * Then, the.

standard minimum problem in linear programming is the problem of finding nonnega-

tive real numbers ti, ' •, tq which minimize the given linear function (2. 1) subject

to the system (2.2) of p linear inequalities.

Now, let y denote the given linear function (2. 1) and let x, , (i = 1, 2, ... , p)

denote the linear function on the left side of the inequality (2.2). Consider

y, X1, .. , Xp also as variables. Then, the standard minimum problem described

I above can be restated as follows:

2-1
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Problem: Find the minimum value of the variable y subject to the following p + 1

linear equations:

q

y =ao,+Za )j t (2.3)
j=l

q
xi = a.i, +Y ai, J tj (2.4)

j=l

where i= I, 2, , p, and the condition that

xi => 0, (i = 1, 2, .. , p) , (2.5)

t. _2 0, (j = 1, 2, , q) . (2.6)

Let A denote the p + I by q + I matrix

A=J 11a, (2.7)

where 0< i< p and 0<_j<_ q.

A column / in A is said to be (lexicographically) positive,

Pi> 0

provided that the first nonzero entry of P , counting from top down, is positive. A

column P in A is said to be (lexicographically) greater than another column 'y in

A provided that

S > 0

Hereafter, we will omit the word "lexicographically" when there is no danger of

misunderstanding.

2-2
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The matrix A is said to be dually feasible in case the q columns

S0 =(a ,j, a 1, , j , ap,) 0

iii where j = 1, 2, ., q . Note that the leading column 0!, in A is not required to

be positive or zero for the dual feasibility of A . In particular, A is dually feasible

if

a .>0, (j , 2, ',q).
0o, 0

If the matrix A is dually feasible, then our standard minimum problem is also said

to be dually feasible.

[1A trial solution of our problem is obtained by setting

Stj =0 , (j =E1, 2, q)

in the p + 1 linear equations (2. 3) and (2.4). Hence, the trial solution of our problem

is given by

y = a0 ,0

x i a i' (i= 1, 2, .-. ,p)

t. =0 (j 1, 2, q)

if A is dually feasible, then y = a 0 is its minimum value for all nonnegative values

of the q variables tj, (j = 1, 2, , q). However, unless

a. 0 (i =1, 2, . , p)

the trial solution obtained above is not a solution of our problem because the condition

(2. 5) is not satisfied. In fact, we have the following:

I
2-3
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Theorem 2. 1. The trial solution

y=ao, x =a. t. =0

where i= 1, 2, ... , p and j =1, 2, .. , q , is an optimal solution of the standard

minimum problem if and only if A is dually feasible and

a.> 0, (i=l, 2, ., p)

1 0

2-4
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Section 3

DUAL SIMPLEX METHOD

The dual simplex method for a. dually feasible, standard minimum problem with

matrix 
A =11 aij 11 

(3. 1) & (2. 7)

where 0 < i < p and 0 < j q , is a finite process of transforming the given problem

into equivalent standard minimum problems with matrices

A W AV A 2ý -1 A r

respectively described so that the trial solution of the last problem with matrix A r
is an optimal solution of the problem.

To insure that all variables remain nonnegative in the final trial solution, we adjoin

to the system (2. 3) and (2.4) of linear equations in Section 2 the identical equations

t i tj (j = 1, 2, q) (3.2)

The coefficients and constant terms of the right members of the system (2.3), (2.4)

and (3.2) form the following matrix:

3-1
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ao, o ao, 'o, ao,q

a1,o' a 1 ,1 a 1 , 2 a 1, q

a P,o a pI a , a pap,o p,1' ap, 2 • . p, q

A
0, 1, 0, , 0

0, 0, 1, , 0

0, 0, 0, ., I

In more compact notation, we have

where A denotes the p + 1 by q + 1 matrix (3. 1), 0 denotes the q by 1 matrix

which consists of q zeroes, and I denotes the q by q unit matrix. Therefore, A 0

is a p + q + 1 by q + 1 matrix. Let us label the rows of A by the integers0

i=0, 1, ... , p+q and the columns of A0 by the integers j =0, 1, ... , q.

Denote by

ai~ (0 < i < p +q, 0 < j <ýq)

the element of A at the i-th row and the j-th column.

On the left member of the identical equation (3.2), let us use the symbol

(1 < j < q)

for the variable t. . Then, our standard minimum problem is equivalent to the
Il 0

standard minimum problem with matrix A which is to find the minimum value of

the variable y subject to the following p + q + 1 linear equations: I
3-2
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= +E a . t. (3.4)Y oo 013 J

j=1

q

x = ai,0 +Zai, j tJ (3.5)

j=1

where i 1, 2, .. , p + q and the condition that

xi_> 0, (i= 1, 2, .. , p+q) . (3.6)

Since the given problem A is assumed to be dually feasible and since A° is obtained

by adjoining q nonnegative rows to A , it is clear that A° is also dually feasible.

The variables tl, t2 , ... , t on the right members of (3.4) and (3.5) are tradition-
ally called the nonbasic variables of the problem A° . By the definition of the new
variables xp. , (1 < j < q) , introduced above, we know that the nonbasic variables
t ... , tq also appear on the left members of (3.5) as q of the p + q variables
Sx1' Xp+q Because of this fact, the condition (3.6) implies that tj > 0 for
every j=1, 2, ... , q.

T Now, let k be a given positive integer and assume that our standard minimum problem

A has been reduced to an equivalent standard minimum problem with matrix

A k- 1=11 bi, j 11

(0 _< i < p + q, 0 < j =< q), which is to find the minimum value of the variable y
subject to the following p + q + 1 linear equations:

q
y = b°, 0 +E bo 0 ub (3.7)

j=1

3-3
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q

x. = b. +1:b iu. (3.8)1, o 0  J1  J

j=1

where i = 1, 2, ., p + q and the condition

x. _> 0 , (i= 1, 2,'"-, p+q) . (3.9)

Furthermore, we assume that Ak I is dually feasible and that the nonbasic variables

U1 , . . .,uq on the right members of (3.7) and (3.8) also appear on the left members of

(3.8) as q of the p + q variables Xl, ..., Xp+q Because of this, the condition

(3.9) implies that u. > 0 for every j = 1, 2, ... , q3 =

If b.i, o> 0 for every i = 1, 2, .. , p + q, then the trial solution

y =b 0  (3.10)

S=b1, 0' (i= 1, 2, -.. , p+q) , (3.11)

is an optimal solution of the standard minimum problem with matrix Ak - I according

to Theorem 2. 1. Since the standard minimum problem with matrix Ak_1 is equiva-

lent to our original standard minimum problem with matrix A , it follows that the

trial solution given by (3. 10) and (3. 11) is also an optimal solution of our original

problem. In this case, we have obtained an optimal solution of our original problem

and hence the problem is solved affirmatively.

Now let us assume that A k-1 is dually feasible but not all of the b., o'S

(1_ i_. p+q), arenonnegative. Choose some i =io, R=< i =< p+q) , with

b. < 0 (3.12)bio o= '

Consider the other elements bio' j of the row in A,, 1 labelled by i° If

bi 0j 0 (j = 1, 2, . q) (3.13)

3-4
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then the negative value xio = bio' o is the maximal possible value of Xi 0 subject

to the condition

U. > 0 (j = 1, 2, .. q) (3.14)

In this case, the standard minimum problem with matrix Ak 1 has no optimal solu-

tion; in fact, the system (3. 8) of p + q linear equations has no nonnegative solution in

Xl, • .. , Xp+q . Since the standard minimum problem with matrix Ak_ 1 is equiva-

lent to our original standard minimum problem with matrix A , it follows that our

original problem has no optimal solution if there exists an inteaer i such that

(3. 12) and (3. 13) both hold. In this case, the system (2.4) of p linear equations fails

to have nonnegative solution in xl, x., Xp and tl, -t • . Hence, the problem Isp 1' j
f solved negatively in this case.

Next, let us assume that (3. 13) is false. Consider the columns /3 of Akl with

bo'b. > 0 (3.15)

and select from these a column 0 jo of A k-1 such that

S#Jo 03
< (3.16)

10, jo 01i

in the lexicographical order defined in Section 2 for all j satisfying (3. 15). In par-

[ ticular, we have

bo jo >0 . (3.17)

SThe fundamental operation used to derive Ak from Ak- 1 is the Garissian elimin-

ation, traditionally called pivoting (on rows) in the theory of linear programming.

Once the integers i0 and j0 have been chosen as above, the element b • j isEl ____bio' 0o

called the pivot element.

SL3-5
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The Garissian elimination with bi j as the pivot element can be described as

follows. We first solve the io-th equation of the system (3. 8) for Uj in terms of

xio. and the remaining u3 ?s; in other words, we write the i 0 -th equation of (3.8) in

the following form:

u°io0 = bo ( O - 1o bo 01 u + xi). (3.18)

Then substitute uo. in each equation of (3. 7) and (3. 8) by the right member of (3. 18).

Thus, the variables y and x1 , ., Xp+q are expressed as linear functions of the

q variables

u, , Ujo_ 1, 0 i U jo +l' , q

For the sake of neatness, let us denote these q variables by v1 , • ., vq ; in other

words, let

u = uj ,(if j jo)

vj=Ij C

xi ,(if j =jo)
0

The result of the Garissian elimination with bi iJ as pivot element is that the

equations (3.7) and (3.8) are transformed into an equivalent system consisting of

p + q + 1 linear equations of the following form:

q
Y =C Co, 0 +L_. Co, j vj (.9Y ooZojj(3. 19)

j=l

q

xi = ci, + • ci, j vj (3.20)
1 1  --.~ 1

j=1

where i=1, 2, ",p+q. T

3-6 j
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B
Since the new nonbasic variables vl, v q are the variables ul, ... ujol, xio,

Uj+, -+ - ., Uq, they also appear on the left members of (3. 20) as q of the p+q

variables xl, Xp+q . Let

A kIjc ij

(0 < i < p + q, 0 < j < q) denote the matrix of constant terms and coefficients on

the right members of (3. 19) and (3.20).

Since (3. 19) and (3.20) are derived by substituting (3. 18) into (3.7) and (3.8), the ele-

ments ci,j of Ak can be easily computed from those of A1 _ 1 as follows: For each

j = 0, 1, ... , q , let /3i and T y denote the j-th column in Ak-1 and Ak respective-

1 ly, that is to say,

L P j =(bo, j, bl, , .. , bp+qj)

* c
= (co, j, , p+q,j

R Then, one can easily verify that

11 b.
b b., j 00l0J 0 oI j.=,

(ifj )b 1 J 00

In words, the matrix A k can be obtained from the matrix Ak-1 as follows: First,

divide the j 0 -th column P 0o of A k-1 by the pivot element bioj0 ; second, sub-

Stract from every other column P/3, j o I this new j 0 -th column multiplied by

bi, . The result is the matrix Ak . "

Note that, in the resulting matrix A , we have Ci j = 1 and cio, = 0 for every

J j o Therefore, the second step in the preceding paragraph can be interpreted

1 3-7
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as to subtract from every column 0. Y , jo , a multiple of the new j 0 -th column

so that its element ci 01  in the i -th row vanishes.

Having determined the columns of the new matrix Ak , we will prove that. this matrix

A1 is still dually feasible. For this purpose, let j be an arbitrary integer satisfying

1 < j < q . We will prove that 'y > 0 lexicographically.

To do this, let us first consider the case j = jo " In this case, since

P.Jo > 0 , bio1 , J > 0

by the dual feasibility of A1 1 and (3. 17), we have

13> 0
i~ - b. . Jo"

W0'

Next, assume that j ý jo " Then we have

=P - b i olio(3.21)
biob joJ

b / gb j flJo (3.22)

If b.i,J < 0, then it follows from (3.21) that

If bi , > 0, then (3.16) holds. Hence, by (3.22), we have

o . > 0

This completes the proof that Ak is dually feasible.

I
3-8
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Thus, our given dually feasible standard minimum problem with matrix A has been

reduced to an equivalent dually feasible minimum problem with matrix Ak = 11 ci, III

(0 < i < p + q, 0 < j < q), which is to find the minimum value of the variable y subject

to the p + q + 1 linear equations (3. 19) and (3. 20) and the condition (3. 9). Since the

new nonbasic variables v1 , v Vq also appear on the left members of (3.20) as q

Sof the p + q variables x., . Xp+q, we have

v > 0 1 (j 1, 2, " q) (3.23)

U3,
This completes the inductive construction of the sequence of equivalent dually feasible

minimum problems with matrices

Ao0 AP "'A kk-' Ak' (3.24)

It remains to prove the finiteness of the sequence (3.24). For this purpose, let us

consider the leading column -o in the matrix Ak . By the dual feasibility of

Ak1 - 1 and (3.17), we have

. > 0. (3.25)

On the other hand, it follows from (3. 12) and (3. 17) that

> 0. (3.26)

b 1 ,j

By (3.25) and (3.26), we have

-- % > ,O (3.27)

o bio 0 jo Jo 0

j Hence, as k increases, the leading column in Ak increases strictly in the lexi-

cographical order. Since there is only a finite number of possible sets of q non-

basic variables chosen from the p + q variables xl, •., Xp+q and any choice

uniquely determines the leading column, the process must stop at some Ak

1 3-9
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This can happen either if there is no negative element in the leading column y of

Ak , or if there is a negative element

c. <0
I0'O

in the leading column -o of Ak but no positive element in the i -th row of Ak

i.e.,

Cioj 0, (0<_ j < q).

In the first case, the trial solution

y =Coo

x 1,0' (1 < i <p+q)

of the problem with matrix Ak is an optimal solution of our given standard minimum

problem with matrix A . Hence, in this case, the problem is solved affirmatively.

In the second case, the negative value ci , o is the largest value of the variable
0

xi and consequently our standard minimum problem with matrix A has no nonnegative
0

solution. Hence, in this case, the problem is solved negatively.

I

3-10
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Section 4

ii DUAL SIMPLEX TABLEAUX

ElFor computational purpose, the dual simplex method, which is described and proved

in Section 3, can be worked exclusively on the matrices involved.

U
The given standard minimum problem is represented by the matrix

AI A=11a,,j 11 (0 • i•: p, 0 : j _: q

ElThe dual simplex method is essentially a finite process of deriving from A a sequence

of p+q+1 by q+1 matrices:

A A0 , A1, ..- Ar.

The initial matrix A is given by0

IA 0 I.AJ 1I
as described in Section 3. In the actual computation, we will write A in the form

of the following tableau T which will be called the initial tableau:0

I

4-1
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Const. t1 t2  .... tq

y a o aoi ao,2 ao, q

X1 a1,0o a1, 1 a1,2 .... a1, q

x2 a2,o a2,1 a2,2 a 2, q

(T ) Xp ap 0 ap, 1  ap 2 ap, q

p+ 1 0 1 0 .... 0

xp+2 0 0 1 0

0

Xp+q 0 0 0 1

For each k = 1, 2, •, r , the matrix Ak is represented by a similar tableau

Tk in which the columns are headed by const., vl, v2 , , v , the new nonbasic

variables. The operation of deriving T k from T_ -1 is described as follows:

Consider the tableau T -1 which has been constructed by the preceding step:

Const. u1  u 2  .... u

y b b b .... bo, o o, 1 o,2 bo, q

x1 blio b 1 , 1  b 1 , 2  .... bjlq

x2 b 2 ,o b2, 1  b2,2 ... b 2 , q

(Tb b b b
(Tk1) xp p,o p,1 p, 2 p, q

Xp+l bp+ 1,o bp+l, 1 bp+ 1,2 .... bp+l,q

p+2 bp+ 2 ,o bp+ 2 , 1  bp+ 2 ,2 p+2,q

Xpbq b+q,o bp+q, 1 bp+q, 2 bp+q,q

4-2
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If the constant column in Tk- contains no negative entry, then it gives an optimal

solution of the given standard minimum problem. Precisely, the minimum value of

the linear function

y oo+ a . t.
~~~j = I o ,

is bo0 , 0 reached when

tj pj p4j, o

[J for every j =1, 2, ... ,q

SOtherwise, there is at least one entry in the constant column of Tk 1 which is neg-

ative. Choose an i with
b. <0.

00 bio, 0

SThen consider the row of Tk-1 which is headed by x. If this row contains no

positive entry, then our given problem has no solution. 0 Otherwise, consider the

Scolumns f3. of Tk- such that

b. .>0

and select from these a column fl.. of T such that

[Jo <o

for every j satisfying bioJ > 0 . Thus, we have obtained the pivot element bi Jo

In numerical computations, the pivot element is usually marked by a circle around

the numerical entry in the tableau T 1 -

I 4-3
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Having chosen the pivot element bio in the tableau Tk --I 1I we can construct the

next tableau Tk as follows:

First, change the nonbasic variable u.jo into x .. Thus, we obtain the nonbasic

variables v 1 , , Vq given by

'uj , (if j jo)

V. =vj= xi ,(ifj =jo).

Next, the column y in Tk headed by vjo = is obtained by dividing 0 by

the pivot element b • ; in symbols,

P.oo/Jo

'j - b.
0 )30

Next, the constant columnn y in Tk is obtained from P 0 by subtracting bio0 o 0Tc;
in symbols,

To 0 -obioO j°

Since bioO is negative, we actually have

Y/o =03 + ( b i°°0) Yj°

Finally, the column y in Tk headed by v. uj , (j jo), is obtained from /3j by

subtracting bio' j yj° ; in symbols,

yj = j -bioJ yjo

This completes the construction of Tk
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Section 5

AN ILLUSTRATIVE EXAMPLE

U In the present section, let us study the standard minimum problem of finding non-

negative real numbers

tj~t1, t2t t 3, t4, t59 t 6

]which minimize a given linear function

12 3 45 6'

subject to a system of 10 linear inequalities

t6 -t5 Ž0

~6 0t 6 - t I - t4 >0

S6 - t2 - t3 0

t +t +t -t6 1 0Ii 12 3 6 -

t + t t 1 > 0
~2 4 6 =

t +t -t -1 0
1 5 6 -

t -t > 0

| ~t 3 -t 2 Ž>0

t- t3 > 0

t5 - t4 > 0

Introduce slack variables xi, (1 < i < 10), for the left members of the inequalities.

Thus, the given problem is reduced to find the minimum value of the variable y

subject to the following eleven equations:
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y =t I+ t2 + t4 +t5 +t6

x =t - t 5

x2 = 6 I - 4

x3  t 6 - 2 - 3
x 4 =tI+ t2 + 3-t3 -t 1

x 5  t 2 + - t 6 -1

x 6  1 +t 5 -t 6 -1

x 7  t 2 - I

x8 =t3 -t2

x9 = 4 - 3

X10 = 5 - 4

and the condition that

xi >0, (1 =5 = 0

t. > 0, (1_ j< 6).

The matrix A of the right members of these equations is as follows:

0 1 1 1 1 1 1

0 0 0 0 0 -1 1

0 -1 0 0 -1 0 1

0 0 -1 -1 0 0 1

-1 1 1 1 0 0 -1

A= -1 0 1 0 1 0 -1

-1 1 0 0 0 1 -1

0 -1 1 0 0 0 0

0 0 -1 1 0 0 0

0 0 0 -1 1 0 0

0 0 0 0 -1 1 0
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Since all coefficients of the linear function y are positive, the problem is dually

feasible. Let

SXl0 +j = tj (15j < 6) .

Then we obtain the initial tableau T0 as follows:

Const. t1 t2  t3  t4  t5  t 6

y 0 1 1 1 1 1 1

x 0 0 0 0 0 -1 1

[ 2 0 -1 0 0 -1 0 1

Sx3 0 0 -1 -1 0 0 1

x 4 -I 1 1 0 0 -1

E 5 -1 0 1 0 1 0 -1

x6 -1 1 0 0 0 1 -1

x 7 0 -1 1 0 0 0 0

(To) x8 0 0 -1 1 0 0 0

x9 0 0 0 -1 1 0 0

x 10 0 0 0 -1 1 0

t 0 1 0 0 0 00
t2 0 0 1 0 0 0 0

S3 0 0 0 1 0 0 0

t 4 0 0 0 0 1 0 0

t5 0 0 0 0 0 1 0

t 0 0 0 0 0 0 1
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The constant column contains 3 negative entries in the rows headed by x4 , x5 and

x6 . Each of these rows contains some positive entries. Let us choose the row

headed by x4 . This row contains 3 positive entries in the columns headed by t1 ,

t and t 3 ' Of these 3 columns, the one headed by tI is the least in the lexico-

graphical order and hence (3. 16) is satisfied. Therefore, we have to choose the

element 1 located in the row headed by x 4 and in the column headed by t 1 as the

pivot element for the construction of the next tableau T1 *

Thus, we indicate the pivot element in T0 by a circle around it. Then, by following

the process of constructing Tk from Tk - 1 described in Section 4, we obtain our

next tableau T 1 , listed as follows:

Const. x4 t2 t3 t4 t5 t6

y 1 1 0 0 1 1 2
xI1 0 0 0 0 0 -1 1

x2 -1 -1 01 -I 0 0

x3 0 0 -1 -1 0 0 1

x4 0 1 0 0 0 0 0

x5 -1 0 1 0 1 0-

x6 0 1 -1 -1 0 1 0

x7 -1 -1 2 1 0 0 -1

(T 1) x8  0 0 -1 1 0 0 0

x9  0 0 0 - 1 0 0

X10 0 0 0 0 -1 1 0

t I 1 -1 -1 00 1

t2 0 0 1 0 0 0 0

t3 0 0 0 1 0 0 0

t 4 0 0 0 0 1 0 0

t 0 0 0 0 0 10

t6  0 0 0 0 0 0 1
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The constant column of T contains 3 negative entries in the rows headed by x 2 ,

x5 and x . Let us choose x 2 . Then, by (3. 16), the pivot element is in the col-

umn headed by t 3 . Hence, we obtain the next tableau T 2 as follows:

Const. x 4  t2  x 2  t4 t5 t6

1 1 0 0 1 1 2

x 0 0 0 0 0 -1 1

L 0 0 0 1 0 0 0

S3 -1 -1 0 -1 -1 0

x4 0 1 0 0 0 0 0

Sx5 -1 0 1 0 1 0 -1

x6 -1 0 0 -1 -1 1 0

V!U x 0 0 1 1 0-I

(T 2 ) x8 1 1 -2 11 0 0

x9 -1 -1i -1 0 0 0

x X0 0 0 0 0 -1 1 0

t1 0 0 0 -1 -1 0 1

t2 0 0 1 0 0 0 0

t3 1 1 -1 1 1 0 0

t 0 0 0 0 1 0 0

t5 0 0 0 0 0 1 0

t6 0 0 NO 0 1

The constant column of T 2 contains 4 negative entries in the rows headed by x3 ,

x 5 x 6 andx 9  Let us choose x 3  Then the pivot element is in the column headed

by t 6 . Thus, we obtain:
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Const. x4 t2 x2 t4 t5 3

y 3 3 0 2 3 1 2

xI 1 1 0 1 1 -1 1

x2 0 0 0 1 0 0 0

x3 0 0 0 0 0 0 1

x4 0 1 0 0 0 0 0

x5 -2 -1. T -1 0 0 -1

x6 -1 0 0 -1 -1 1 0

x7 -1 -1 1 0 0 0 -1

(T3) x8 1 1 -2 1 1 0 0

x9 -1 -1 1 -1 0 0 0

x 10 o0 0 0 0 -1 1 0

t 1 1 0 0 0 0 1

t2 0 0 1 0 0 0 0

t3 1 1 -1 1 1 0 0

t 4 0 0 0 10 1 1 0 10

t5 0 0 0 0 0 0

t6 1 1 0 1 1 0 1

The constant column of T3 contains 4 negative entries in the rows headed by x5 ,

x 6 , xT, and x9 . Let us choose x5 . Then the pivot element is in the column

headed by t 2 * Thus we obtain:
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iC Const. x4  x5  x2  t4 t5 x3

y 3 3 0 2 3 1 2

[x 1 1 0 1 1 -1 1

x2 0 0 0 1 0 0 0

Sx3 0 0 0 0 0 0 1

x4 0 1 0 0 0 0 0

x5 0 0 1 0 0 0 0

6 0 o -1 o
x7 1 0 1 1 0 0 0S(T 4 )-

x 8 -3 -1 -2 -1 1 0 -2

x9 1 0 1 0 0 0 1

x 0 0 0 0 -1 1 0

1I t1 1 1 0 0 0 0 1

t2 2 1 1 1 0 0 1

St3 -1 0 -1 0 1 0 -1

t4 0 0 0 0 1 0 0

t 5 0 0 0 0 0 1 0

t ,6 1 1 0 1 1 0 1

I The constant column of T 4 contains 3 negative entries in the rows headed by x6 ,

S8 and t3 . Let us choose x6 . Then the pivot element is in the column headed by

t5 ' Thus we obtain:
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Const. x4  x5  x 2  t 4  x 6  x 3

y 4 3 0 3 4 1 2

x 0 1 0 0 0 -1 1
x2 0 0 0 1 0 0 0

x3 0 0 0 0 0 0 1

x4 0 1 0 0 0 0 0

x5 0 0 1 0 0 0 0

x6 0 0 0 0 0 1 0

x7 1 0 1 1 0 0 0

(T 5) -3 -1 -2 -1 0 0 -2

x9 1 0 1 0 0 0 1

x 1 0 0 1 0 1 0

t 1 1 0 0 0 0 1

t 2 1i 1 0 0 1

t3 -1 0 -1 0 1 0 -1

t4 0 0 0 0 1 0 0

t5 1 0 0 1 1 1 0

t 1 1 0 1 1 0 1

The constant column of T5 contains 2 negative entries in the rows headed by x 8

and t 3 * Let us choose x8 . Then the pivot element is in the column headed by t4 .

Thus we obtain:
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Const. x 4  x5  x2  x8  x6  x3

y 16 7 8 7 4 1 10

x 0 1 0 0 0 -1 1

Ux2 0 0 0 1 0 0 0

Sx3 0 0 0 0 0 0 1

x4 0 1 0 0 0 0 0

1 5 0 0 1 0 0 0 0

x 6 0 0 0 0 0 1 0

x7 1 0 1 1 0 0 0

6 (T6 0 0 0 0 1 0 0

x9 1 0 1 0 0 0 1

x 1 0 0 1 0 1 0

St1 1 1 0 0 0 0 1

t 2 2 1 1 1 0 0 1

t 3 2 1 1 1 1 0 1

t4 3 1 2 1 1 0 2

t5 4 1 2 2 1 1 2

t6 4 2 2 2 1 0 3

Since the constant column of T6 contains no negative entry, we obtain an optimal

solution of our problem; namely, the minimum value of the linear function'

y=t +t 2+t 3+t t +t6

subject to the given constraints is
S~y = 16
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reached when

t =1l=1

t2=2

t3 =2

t 4 = 3

t5 =4

t 6  4

This completes the illustrative example.

In the preceding example, we have always chosen the first negative entry, counting

from top down next to the y row, in the constant column of the tableaux. For definite-

ness, one can make this a rule in practice especially when programming to electronic

computers.
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Section 6

SWITCHING FUNCTIONS

ElLet Q denote the set which consists of the two integers 0 and 1 . For any given

integer n > 1 consider the Cartesian power

Qn =Qx... xQ

Swhich is the Cartesian product of n copies of Q . Thus, the elem ents of Qn are
the 2 n ordered n-tuples

U (x' x 2 ' ..... Xn)

fl where the k-th coordinate x is in Q for every k = 1, 2, ... n. Hereafter, Qn

will be called the n-cube and its 2 n elements will be called its points.

[I By a switching function (or truth function or Boolean function) of n variables, we

mean any subset F of the n-cube Qn. Since Qn has 2 n points, there are 2 2 n

different switching functions of n variables.

A switching function F of n variables is said to be linearly separable provided that

there exist n+1 real numbers w 1 , w 2, ... wn, wn+ 1 such that, for every point

I x=(x 1 , .... Xn)in Qn wehave xEF ifandonlyif

w xl+wx2+ ... +wx Wn+1

I The set w = (w, w2 , ..... wn, w n+) is called a separating system of F ; the real

numbers w 1 , w2 , ..... wn are called the weights, and the real number wn+1 is

called the threshold. By taking the threshold wn+1 as small as possible while the

weights w.. Wn are held fixed, we may assume that, in case F is not empty,

there exists a point x = (x 1 ..... xn) in F such that

w x' + w x + "'" +w w
1 1 2 2 n n n1
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Consider the complement F' = Q_-F of F . For every point y = (yl, . y n ) in

F' we have

wly 1 +w 2 y 2 +.'" +wnyn > Wn+l"

Let M denote the minimal value of

wIYl +w 2 y 22 + Wn Yn -Wn+

for all points y = (yl, . . yn) in F' in case F' is not empty. This positive real

number M is called the margin of the separating system W (Ref. 8, p. 6). A sep-

arating system W = (w 1 , ..... wn+I) of F is said to be normal provided that M = 1.

Every separating system W of F can be normalized by dividing each wi , (i = 1, 2,

n+ 1), by the margin M of W . In particular, every linearly separable switch-

ing function F has a normal separating system.

Let W-(w1, ... ) w n+ ) be any normal separating system of a given linearly separa-

ble switching function F of n variables. Then, for every point

x=x... X1 xn) G Qn

we have:

w x1 + +.. +wn x nw n+ (if xcF)

-Wl Xl+ .. .+w x >w -1
n nn= Wn+l" 1, (if xEF')

By a canonical switching function of n variables, we mean a linearly separable

switching function F of n variables which admits a separating system W = (w1,

S.. w, Wn+ ) satisfying
0 < w1 w2 ... < w n

In words, the weights w1 , w2 ' .- 5 wn in W are nonnegative and nondecreasing.
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It is well-known (Refs. 9 and 10) that every linearly separable switching function F

of n variables can be reduced to a unique canonical switching function by permuting

and complementing a number of the variables.

By a weight function of n variables, we mean a homogenous linear function

w:Rn -R

on the n-dimensional Euclidean space R with real values. Precisely, there are

n real numbers w1, .... wn such that, for an arbitrary point x = (x 1 ..... Xn) of

Rn ,we have

w(x) =wx 1 + ... + wn x n

The real numbers w1 ... , wn are called the coefficients of the weight function w.

A weight function w : Rn -• R with coefficients w1 , .. wn is said tobe canonical

provided

0<:ýw I •w 2 <wn

By means of the canonical weight functions of n variables, we can define a partial

order in the n-cube Qn as follows: Let x = (x1 , .... xn) and y = (yl, . .. , yn) be

any two points of Qn ; then we define x < y if and only if w(x) <5 w(y) for every

canonical weight function w of variables. This partial order in Qn is called the

canonical partial order (Ref. 10).

Using the canonical partial order < in the n-cube, we can define the regular switching

functions as follows: a switching function F of n variables is said to be regular if

and only if it satisfies the regularity condition:

If xEF and y. 5x, then yEF.

Obviously, every canonical switching function of n variables is regular. In Ref. 11,

it was proved that every regular switching function of n < 5 variables is canonical;

in Ref. 12, an example is given which shows that not every regular switching function

is canonical.
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Section 7

1]SYNTHESIS AND MINIMIZATION

ElLet F be an arbitrary switching function of n variables. The synthesis problem for

the linear separability of F is to determine whether or not F is linearly separable

1and to find a separating system (wV1 ..... wn, w n+) for F in case F in linearly

separable.

11

Among various synthesis methods for linear separability introduced in the literature,

the one given by D. G. Willis (Ref. 4), turns out to be the most convenient because it

involves as few linear inequalities as possible. In Ref. 4, the synthesis problem for

the linear separability of arbitrary switching functions of n variables was reduced to

that of the regular switching functions of n variables. Indeed, it remains to determine

whether or not a given regular switching function F is linearly separable and to find

a canonical separating system (w ..., wn, Wn+) for F in case F is linearly

separable and hence canonical.

For the convenience of the reader, we describe briefly the Willis synthesis method

as follows:

Let F be an arbitrary nonempty regular switching function of n variables as defined

in Section 6. Let L denote the set of all maximal points of F with respect to the

canonical partial order in the n-cube Qn; and let M denote the set of all minimal

points of the complement F' = nF with respect to the same canonical partial order

in Qn. Let

a 1'n "' ' = 1, 2, . .

be the points of L and
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bj bjl, ... , bjn ( j 1, 2, ... )
be the points of M. Consider the following system of linear inequalities:

n

a.ik wk wn+_, (i =1, ...2 X)k = 1
k=1

n

E bj kWk_ wn++ 1, (j =1, 2,.... ) (7.1)
k=1

0 <s w I < w 2 W n

Then, the Willis synthesis theorem states that the given regular switching function

F is linearly separable if and only if the system (7. 1) of linear inequalities has a

solution (and hence an integral solution) in w1 .... wn and wn+1.

In Ref. 13, the system (7. 1) was solved by Fan's principle of bounding solutions. An

elimination process for solving the system (7. 1) was formulated in Ref. 14, and meth-

ods of successive approximation were applied to solve (7. 1) in Ref. 15. Finally, the

simplex method in linear programming was used in finding a solution of the system

(7. 1) in Ref. 3.

The next problem is naturally the minimization problem which is to find the most

economical solution of the system (7. 1) in case the given regular switching function

F is linearly separable. In other words, the minimization problem is to find a

solution

of the system (7. 1) which makes some cost function

(Wl ..... Wn' Wn+l)

minimal. The precise formulation of the problem is as follows: I
7-2
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First, let us pick the cost function 0 . Assume that the cost of realizing the wi,

il (i = 1, 2, ... , n, n+ 1), is proportional to the magnitude of wi . Under this assump-

tion, the cost function 0 will be a homogeneous linear function

L n+1

w 1 (Wl Wn+l) - i wi (7.2)
S~i=l

where the coefficients y. ^/n+' are nonnegative real numbers. In the literature,

(see Ref. 16), two different cost functions have been studied; one of these is defined

by y. =1 for all i=1, 2, ... , n+1 and the other is given by y =1 for all i_<n

andy n+1 =0.

SHaving fixed the cost function 0 by (7. 2), the minimization problem for the given

regular switching function FT is that of finding a canonical normal separating system

1 which minimizes 0 ; in other words, nonnegative real numbers

w1 , w2 , ... , wn+1

are to be determined which minimize the cost function (7.2) and satisfy the system

(7. 1) of linear inequalities.
I

Next, let us write the system (7. 1) of linear inequalities in the form of (2. 2). Thus,

tthe first X linear inequalities become

n
- ��a w1 +w,, 1 _> 0, (i=1, 2, ... X).3)

k=1

The next pi linear inequalities of (7.1) become

n
-1 + 2:j k - n 1> 0, (j =1, 2 .. .. p) .(7.4)

k = 1
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Under the condition that the variables wI .... Wn+1 are nonnegative, the remaining

inequalities in (7. 1) are equivalent to following n-1 linear inequalities:

Wk - Wk_ 1 =R 0, (0 = 2, 3, ... , n). (7.5)

Consequently, the minimization problem for the given regular switching function F

is a standard minimization problem in linear programming of finding q = n + 1 non-

negative real numbers

('vtl w2' ... Wn, W n+l1

which minimize the linear cost function (7. 2) and also satisfy the system of p = X +

S+ n - 1 linear inequalities (7.3), (7.4), and (7.5).

I
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Section 8

LiSOLUTION OF THE MINIMIZATION PROBLEM

ui In Section 7, we have seen that the minimization problem for a given regular switching

function F is a standard minimization problem in linear programming. In the pre-

sent section, we are concerned with the methods of solving this problem. For this

purpose, we assume that the first n coefficients in the cost function (7. 2) are posi-

tive; in symbols,

,y > 0, (i = 1, 2,. .. n). (8.1)

SEconomically, this means that it costs something to realize the weights w 1 , ..... wn

physically. For the two different cost functions studied in Ref. 16, yi = 1 for all

i = 1, 2, . .., n. Hence, the condition (8. 1) is rather reasonable.

Let us briefly review some standard terminology in linear programming. By a

feasible solution of the minimization problem for F , we mean a set of n+ 1 non-

1 negative real numbers

(w19, w21 ..... Wn, W n+1)

which satisfy the linear inequalities (7. 3), (7. 4), and (7. 5). By an optimal solution

of the problem, we mean a feasible solution which minimizes the cost function (7. 2).

The minimization problem for F is said to be feasible provided that it has a feasible

solution. Hence, the problem is feasible if and only if the given regular switching

function F is linearly separable.

Furthermore, for the nontrivial case where F is nonempty and different from the

whole n-cube, it was proved in Ref. 5 that the minimization problem for F has opti-

mal solutions if and only if it is feasible. Hence every linearly separable regular

switching function F of n variables has a minimal canonical normal separating

system.
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As to methods of solving the minimization problem for a given regular switching

function F of n variables, we certainly think of the usual simplex method in linear

programming. This method splits into two parts of work. The first part is the search

of a feasible solution of the problem as in Ref. 3; and the second part is the applica-

tion of the simplex technique to find an optimal solution starting from the feasible

solution found in the first part. Because of this, the usual simplex method is rather

inefficient for this particular minimization problem.

On the other hand, the dual simplex method described in Section 3 suits especially

well for solving our particular standard minimization problem. Indeed, under the

reasonable assumption (8. 1), the minimization problem for any nonempty regular

switching function F of n variables is always dually feasible as defined in Section 2.

Hence, we can apply the dual simplex method to our problem right away.

As an illustrative example, let us consider the regular switching function

F = 531

of five variables in the notation introduced in Refs. 12 and 17. Precisely, F con-

sists of the following ten points of Q5:

(0, 0, 0, 0, 0) (0, 0, 0, 0, 1)

(1, 0, 0, 0, 0) (1, 1, 0, 0, 0)

(0, 1, 0, 0, 0) (1, 0, 1, 0, 0)

(0, 0, 1, 0, 0) (1, 0, 0, 1, 0)

(0, 0, 0, 1, 0) (0, 1, 1, 0, 0).

Tte maximal points of F can be read from its label 531 in accordance with Ref. 12.

In fact, F has three maximal points, namely,

(0, 0, 0, 0, 1) A
(1, 0, 0, 1, 0)

(0, 1, 1, 0, 0).
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To find the minimal points of the complement F' of F , we may first find the dual

jjF* of F defined in Ref. 18. According to the table at the end of Ref. 18, the dual

of F = 531 is

ElF* = 54321/32/1

in the :notation of Ref. 17. By the table given at the end of Ref. 12, the regular

switching function F* has three maximal points, namely,

(0, 0, 0, 1, 1)

(1, 0, 1, 0, 1)

(0,1,1,1,0).

By Theorem 5. 1 in Ref. 18, it follows immediately that the complement F' of F

has three minimal points, namely,

(1, 1, 1, 0, 0)

(0, 1, 0, 1, 0)

(1, 0, 0, 0, 1)

Having obtained the maximal points of F and the minimal points of its complement

F' , we can exhibit the system of inequalities (7. 3), (7.4) and (7.5) in the form of

the following ten linear inequalities:

w 6 - w5 >0 0

w6 -w 1 - w4 > 0

w6 -Iw 2 - w5 >0

w1I+ w 2 + W3 -w6- 1 > 0

w2 + w w -1 > 01 2 3 6

w 1 + w 5 - w6 1 0

w2 - w 1_ 0

w3 - w2 - 0

w >4 0

w5 > 4 0

8-3
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Next, for the definiteness, lei. us choose the cost function to be the linear function

yw 1 Fw 2 +W 3 +w 4 +W 5 +w 6 .

Thus, we obtain exactly the illustrative example in Section 5 as our standard minimum

problem. Hence, the given regular switching function F = 531 has a minimal nor-

mal canonical separating system

(W1 , W2, 3 , w' 4 , 5 w 6 )

with

w =2

w3=2

w = 2
w 32

w5 =4

w 6  4

I
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